
1

Client-Side Caching
in Fractal RMI

Tuesday, November 29, 2005

Philippe Merle

Email: Philippe.Merle@inria.fr
INRIA Futurs – Jacquard Project,
Laboratoire d‘Informatique Fondamentale de Lille, France

ObjectWeb Fractal Workshop – Grenoble, France

2

Agenda

• Motivation

• From Fractal to client-side caching in Fractal RMI

• Design issues and choices

• Examples

• Implementation status

• Evaluation

• Current limitations

• Conclusion

• Perspectives

3

Motivation
• Fractal for distributed fine-grain component-based middleware

• Implementations: Julia, ProActive, Think, AOKell, etc.
• Tools: Fractal ADL, Fractal Explorer, Fractal JMX, Fractal RMI, etc.
• Middleware: DREAM, GoTM, Speedo, etc.

• Poor performance when distributed bindings between components!
• Time(remote call) >> Time(local call)

• Our goal: Improving performance of distributed Fractal applications

• Well-known approaches to improve performance
• Mobility: Move activities near used components (see ProActive)
• Caching: Move data near using components

• Our approach: Client-Side Caching in Fractal RMI

4

Fractal

Same memory space

(1) (2) (3)

Java method call

Client Itf Server Itf
binding

5

Fractal RMI

Fractal RMI

Two separate memory spaces

Fractal RMI

Network
Stub SkeletonRMI protocol

(1) (2) (3) (4) (5) (6) (7)

Generated on the fly when needed

6

Fractal RMI

Client-Side Caching in Fractal RMI

Two separate memory spaces

Fractal RMI

Network
Stub SkeletonCache

Policy
RMI protocol

(1) (2) (3) (4) (5) (6) (7) (8)

7

Some Design Issues
• Which consistency policies?

• None, local, or global

• Which caching granularity?
• Operations, interfaces, components, composites, etc.

• Which level of transparency?
• None, component participation, or full

• What kind of caching policies?
• System or user defined

• How express caching policies?
• Programmed as Java classes?
• Described with Aspect Specific Language?

• How integrating client-side caching in Fractal RMI?

• Do we need to extend Fractal?

8

Our Current Design Choices
• Which consistency policies?

• None, local, or global

• Which caching granularity?
• Operations, interfaces, components, composites, etc.

• Which level of transparency?
• None, component participation, or full
• Existing components directly reusable!

• What kind of caching policies?
• System or user defined

• How express caching policies? BOTH
• Programmed as Java classes
• Described with Aspect Specific Language

• How integrating client-side caching in Fractal RMI?
• Caching as an aspect weaved into Fractal RMI

• Do we need to extend Fractal?
NO

9

Client-Side Caching in Fractal RMI
• An Aspect Specific Language to abstract caching policies

• At operation, interface, inter-interface levels

• A set of caching policies for
• All Fractal controller interfaces
• Fractal RMI Registry interface
• Specific Julia controller interfaces

• Caching policies are compiled to caching mixins

• Caching mixins are mixed with Fractal stubs
• Smart proxies with fine grain cache

• Fractal Stub Factory is updated to use the bytecode mixer

• Still Work In-Progress!

10

Extended Fractal RMI Stub Factory

The Big Picture

Caching PolicyJava Itf

Fractal RMI
Stub Generator

Caching Policy
Compiler

Stub Class Caching Mixin Class

Bytecode
Mixer

Smart Fractal RMI Proxy Class

Separation of Concerns

Other
Concerns

e.g. statistics
logging

capabilities

11A Simple Example:
The NameController Interface

interface NameController
{

public String getFcName();

public void setFcName(String name);

}

12Caching Policy for
the NameController Interface

interface NameController
{

public String getFcName();

If already cached then return it
Else delegate to stub
Keep result in cache

public void setFcName(String name);

If cached value == name then return // OPTIMISATION
Else delegate to stub
Update cache

}

13Caching Mixin for
the NameController Interface

public class NameController_CachingMixin
implements CachingMixin,

NameController
{

// Reference to the delegate stub
private NameController _stub_;

// Cache for FcName
protected StringHolder cachedFcName_;

…

}

14Caching Mixin for
the NameController Interface

public String getFcName() {
// Check if the result is already cached.
if(cachedFcName_ != null) return cachedFcName_.value;
// Is not already cached invoke remote controller.
String result = _stub_.getFcName();
// Update the cache.
cachedFcName_ = new StringHolder(result);
return result;

}
public void setFcName(String name) {

if(cachedFcName_ != null && name.equals(cacheFcName_.value)) return;
// Invoke the remote NameController via the Fractal RMI stub.
super.setFcName(name);
// Keeps the name in the local cache.
cachedFcName_ = new StringHolder(name);

}

15

Overview of Other Caching Policies

Result cached
Update cache

Result cached
Update cache

getFcState, startFc, stopFc,
setFcStarted

getFcSuperComponents
addedToFc, removedFromFc

LifeCycle
Coordinator

SuperControll
erNotifier

Julia

Result cached
Update cache

list, lookup
bind, rebind, unbind

Naming
Service

Fractal
RMI

Result cached

Result cached
+ Init cache of returned stubs

Init cache type of returned
component

Result cached + init cache of
returned stubs

Update cache

Result cached
Update cache

getFcItfOwner, getFcItfName,
getFcItfType, isFcInternalItf

getFcType
getFcInterface, getFcInterfaces

newFcInstance

getFcInternalInterfaces
getFcInternalInterface
getFcSubComponents
addFcSubComponent
removeFcSubComponent

listFc, lookupFc
bindFc, unbindFc

Interface

Component

Generic
Factory

Content
Controller

Binding
Controller

Fractal

PolicyOperationInterfaceFrom

16

Main Issue with Fractal Specification
• No pre defined formal behavior specification for Fractal controller
interfaces

• To allow various implementations for various application contexts

• However, caching policies are based on observable behaviors of
controller interfaces
• Examples

• Are sub-components stopped when the super component is stopped?
• Is a null name authorized?

– Some components have a NameController which returns null value

• Proposal for Fractal V3:
• Continue to define standard Fractal controller interfaces
• But also define some standard possible behaviors
• Controller and ControllerBehavior1, ... ControllerBehaviorN

17

Implementation Status
• Caching mixins already available for

• All Fractal controller interfaces
• Fractal RMI Registry interface
• Some specific Julia controller interfaces

• Mixer of caching mixins and Fractal RMI stubs
• Written with ASM 2.1
• Based on the Julia controller mixer

• New Fractal Stub Factory using the bytecode mixer

• Added Statistics as another concern
• Useful for evaluating method calls / methods cached

18

Evaluation
• Done on Fractal Explorer and Fractal ADL

• No modification of these Fractal applications!

• All remote Fractal introspection calls are cached!
• Fractal Explorer: Drastically improve performance
• Fractal ADL: Between 30%-50% of remote calls removed

Only keep strict necessary remote calls

19

Current Limitations
• No consistency between distributed caches!

• Caching ASL must be defined!

• ASL compiler must be written!

• Mixer does not support inheritance between caching mixins
• e.g., CachingMixin(IB) extends CachingMixin(IA) when IB inherits IA

• From a prototype to a stable release

20

Conclusion and perspectives
• Improving performance of distributed Fractal applications

• Client-Side Caching in Fractal RMI
• ASL for abstracting caching policies
• Generate (write) caching mixins
• Mixing caching and stub concerns transparently and efficiently

• No modification of existing Fractal applications
• Effective separation of concerns

• Perspectives
• Resolve the current limitations
• Generalize the approach to Java RMI, CORBA, Web Services

– ASL, caching policies/mixins, and mixer
– Specific caching policies

21

Thank you for your attention…

If you have any questions?

