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Motivation
• Fractal for distributed fine-grain component-based middleware

• Implementations: Julia, ProActive, Think, AOKell, etc.
• Tools: Fractal ADL, Fractal Explorer, Fractal JMX, Fractal RMI, etc.
• Middleware: DREAM, GoTM, Speedo, etc.

• Poor performance when distributed bindings between components!
• Time(remote call) >> Time(local call)

• Our goal: Improving performance of distributed Fractal applications

• Well-known approaches to improve performance
• Mobility:  Move activities near used components (see ProActive)
• Caching: Move data near using components

• Our approach: Client-Side Caching in Fractal RMI
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Some Design Issues
• Which consistency policies?

• None, local, or global

• Which caching granularity?
• Operations, interfaces, components, composites, etc.

• Which level of transparency?
• None, component participation, or full

• What kind of caching policies?
• System or user defined

• How express caching policies?
• Programmed as Java classes?
• Described with Aspect Specific Language?

• How integrating client-side caching in Fractal RMI?

• Do we need to extend Fractal?

8

Our Current Design Choices
• Which consistency policies?

• None, local, or global

• Which caching granularity?
• Operations, interfaces, components, composites, etc.

• Which level of transparency?
• None, component participation, or full
• Existing components directly reusable!

• What kind of caching policies?
• System or user defined

• How express caching policies? BOTH
• Programmed as Java classes
• Described with Aspect Specific Language

• How integrating client-side caching in Fractal RMI?
• Caching as an aspect weaved into Fractal RMI

• Do we need to extend Fractal?
NO
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Client-Side Caching in Fractal RMI
• An Aspect Specific Language to abstract caching policies

• At operation, interface, inter-interface levels

• A set of caching policies for
• All Fractal controller interfaces
• Fractal RMI Registry interface
• Specific Julia controller interfaces 

• Caching policies are compiled to caching mixins

• Caching mixins are mixed with Fractal stubs
• Smart proxies with fine grain cache

• Fractal Stub Factory is updated to use the bytecode mixer

• Still Work In-Progress!

10
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11A Simple Example:
The NameController Interface

interface NameController
{

public String  getFcName();

public void setFcName(String name);

}

12Caching Policy for
the NameController Interface

interface NameController
{

public String  getFcName();

If already cached then return it
Else delegate to stub
Keep result in cache

public void setFcName(String name);

If cached value == name then return // OPTIMISATION
Else delegate to stub
Update cache

}



13Caching Mixin for
the NameController Interface

public class NameController_CachingMixin
implements CachingMixin,

NameController
{

// Reference to the delegate stub
private NameController _stub_;

// Cache for FcName
protected StringHolder cachedFcName_;

…

}

14Caching Mixin for
the NameController Interface

public String  getFcName()  {
// Check if the result is already cached.
if(cachedFcName_ != null) return cachedFcName_.value;
// Is not already cached invoke remote controller.
String result = _stub_.getFcName();
// Update the cache.
cachedFcName_ = new StringHolder(result);
return result;

}
public void setFcName(String name)   {

if(cachedFcName_ != null && name.equals(cacheFcName_.value)) return;
// Invoke the remote NameController via the Fractal RMI stub.
_super_.setFcName(name);
// Keeps the name in the local cache.
cachedFcName_ = new StringHolder(name);

}
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Overview of Other Caching Policies
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Main Issue with Fractal Specification
• No pre defined formal behavior specification for Fractal controller 
interfaces

• To allow various implementations for various application contexts

• However, caching policies are based on observable behaviors of 
controller interfaces
• Examples

• Are sub-components stopped when the super component is stopped?
• Is a null name authorized?

– Some components have a NameController which returns null value

• Proposal for Fractal V3:
• Continue to define standard Fractal controller interfaces
• But also define some standard possible behaviors
• Controller and ControllerBehavior1, ... ControllerBehaviorN
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Implementation Status
• Caching mixins already available for

• All Fractal controller interfaces
• Fractal RMI Registry interface
• Some specific Julia controller interfaces 

• Mixer of caching mixins and Fractal RMI stubs
• Written with ASM 2.1
• Based on the Julia controller mixer

• New Fractal Stub Factory using the bytecode mixer

• Added Statistics as another concern
• Useful for evaluating method calls / methods cached
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Evaluation
• Done on Fractal Explorer and Fractal ADL

• No modification of these Fractal applications!

• All remote Fractal introspection calls are cached!
• Fractal Explorer: Drastically improve performance
• Fractal ADL: Between 30%-50% of remote calls removed

Only keep strict necessary remote calls
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Current Limitations
• No consistency between distributed caches!

• Caching ASL must be defined!

• ASL compiler must be written!

• Mixer does not support inheritance between caching mixins
• e.g., CachingMixin(IB) extends CachingMixin(IA) when IB inherits IA

• From a prototype to a stable release
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Conclusion and perspectives
• Improving performance of distributed Fractal applications

• Client-Side Caching in Fractal RMI
• ASL for abstracting caching policies
• Generate (write) caching mixins
• Mixing caching and stub concerns transparently and efficiently

• No modification of existing Fractal applications
• Effective separation of concerns

• Perspectives
• Resolve the current limitations
• Generalize the approach to Java RMI, CORBA, Web Services

– ASL, caching policies/mixins, and mixer
– Specific caching policies
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Thank you for your attention…

If you have any questions?


