THINK
C Implementation of Fractal

and its ADL tool-chain

Fractal Workshop
July 2006

Matthieu Leclercq (ST), Olivier Lobry (France Telecom),

Erdem Ozcan (ST, INRIA), Juraj Polakovic (France
Telecom),

Jean-Bernard Stefani (INRIA)

Advanced System Technology

Outline

a Think

— Fractal implementation in C
— ADL tool-chain for code generation
— Kortex: A component library for OS construction

Q Fractal ADL Compiler for Think
— Front-end
— Back-end
— Plug-in framework

0 Conclusions

Advanced System Technology

Component implementation

O Binary component model
— Similar to Microsoft COM

itf1~

itf2*

Advanced System Technology

Client interfaces &
Instance variables

Cltitf i1
float var2
vibl* char var3
this*
fo0* /—DI foo(.){...}
bar*
bar(.){...}
vibl*
this*
oor =t { . }]
titi*
i) {... }

Component implementation

O Binary component model

7) Sitf* Component data
— Similar to Microsoft COM vt N [oo F—[foo) (.} |
this* -
Siti* e bar bar(.){...}
O Support for Fractal interfaces " oo —»{oto() (..}]
— Control interface code = Cltif *i1 titi*
— Control data floatvare)
charvar3 | private data
Reflexivity data
— Sitf1* “Sitf1" Server
LI sier gitfer | Interfaces
i "jqe - '
var2® var2t | nibytes

Advanced System Technology

Component implementation

. Server Server |
O Binary component model el el
— Similar to Microsoft COM

Z
=

O Support for Fractal interfaces

Control interf d Component || Binding 1 Attribute |
- Identi i__Controller ! _Controller__|
ontretintertace code [Cioaa "dar | CDeIA ‘datar ACDAS “caiei

— Control data

Component
o Code generation & Compilation provectedy
— Help the programming of Aopala
primitive components
- C Gi ted by th
— Generate code for composite -l ADL Gomplr
components menosto()| [] Hand witen
. me e,
— Bootstrap code generation T
short ... ;

Advanced System Technology

Fractal/Think Compilation chain

ADL Compiler

IDL ADL
compiler compiler
Target independent

E

’ Target dependent
Target's Binary
\
ﬂ Bootloader
(0] v -
Binary
components,
A

Target's —
C compiler,
Component
implementations| /

Advanced System Technology

Kortex: a component library for
OS construction

Q Components for

— Classical OS services:

v’ schedulers, memory management, MMU, exception
handling, file systems, ...

— Communication services:
v TCP/IP, PPP, GPRS, Bluetooth, radio, ...
— Device drivers:

v’ framebuffer, touchpanel, keyboard, serial port, disk,
ethernet, ...

O Supported Platforms
— ARM (iPAQ, Apple iPod, ixp425), AVR, PowerPC, ST200

Advanced System Technology

Outline

O Fractal ADL Compiler for Think
— Front-end
— Back-end
— Plug-in framework

Advanced System Technology

Code generation tool-chain for
Fractal ADL

Q Starting point : Fractal ADL Factory
— Deployment from ADL for Fractal/Java
v Implemented in Fractal/Java
v' Component-based architecture described in Fractal ADL
— Modular
v Clear, accessible and modifiable architecture

O Contribution

— Support for code generation & compilation

v'New and multiple input languages (Think ADL, Think IDL,
join-patterns, etc.)

v Support for new and multiple implementation languages
— Extensibility improvement

v Easy support for new ADL features

v Allow for third-party developer extensions with plug-ins

Advanced System Technology

Overview
O High-level Architecture rasamot o
— Front-end : Loader Bh o k Loader
- BaCk-end Task Organizer
\/Organizer I- '-Orgamzer E Builder

v’ Task framework

v Builder

O Workflow

S f = Task Organizer

Loader
™

- AL |t
| tractal ["ADL cader JLAST
! — v

H
Organizer }= Builder
|

Advanced System Technology

Front-end
Translation of input files to an AST

O Specification
— Input: ADL, IDL and component implementation files (C,
C++, Java, etc.).
— Output: Unified Abstract Syntax Tree

O Main features
— Extensible for supporting new input languages.
— Fine-grain components each responsible for a specific
analysis.
— Robust and extensible AST implementation.
v Dynamically generated implementation of AST nodes.
v Programmable node factory based on DTD.

v’ Extension transparency for modules that are not involved
by thanks to multi-facet nodes.

Advanced System Technology

Internal architecture

Unbound Binding Imp! w«n Cor mp »OL

AST o Hz fH 2 e
Node .sva#:" . N:ce Node
Factory Parser rx arser Factory

Q The loader is designed as a component-
chain
— Very modular and extensible
— Allows for multiple parsers at different stages
— Simple programming pattern "coe 2¢(®iring name)t

myCheckOperation(myAST);
return myAST ;
}

Advanced System Technology

Node myAST = client->load(name) ;

Outline

Q Think
— Fractal implementation in C
— ADL tool-chain
— Kortex: A component library for OS construction

O Fractal ADL Compiler for Think
— Front-end
— Back-end
— Plug-in framework

O Conclusions

Advanced System Technology

Code generator & Compiler

Q Specification
— Input : A correct AST
— Output :
v Generated code
v Compilation
O Main features

— Modular: code generation is split into fine-grain

components

— Hierarchical and collaborative: components may
aggregate code pieces that are generated by others

— Extensible: components can be added, removed or
modified without impact on the rest of modules.

— Retargetable : supports multiple backends for different

general purpose programming languages.

Advanced System Technology

Internal Architecture

— Organizers el bulcer | — Builders
v'Creates code [come . builder v'Provides effective
- s Organizer = 2 . A
generation and T — implementation of
. . Ul
compilation tasks sk ks tasks.
| Graph —
Tasx Scheduler

s 11) N
Task Task Dependancy | Scheduled Executer \2as)
Task ™ 3 Graph Resolver Task List e, A
" 2 Sutio,
S f 7 Compilaton
Task 4

O Task framework)
v Tasks reifies code generation and compilation operations
v Dependency declarations
v’ Execution of tasks in a correct order

Advanced System Technology

Organizers

O Maestro of the code generation

— Input : Correct AST ggﬂzmﬁm Definition Code o)

— Output : A task graph g‘,’g’gfji';;‘;’" m:m‘
e et M
0 Component based visitor pattern - e B
— AST walkers F Segeizer JHHTH

v Walks recursively in the AST I— Instance Code H companens

v Invoke connected visitors for each H ==
component node H e fTH
— Component visitors : Compilation o)] L,

v Responsible for a specific purpose H et

H Ly
organizer

v’ Create the build tasks

Advanced System Technology

Builders

O Features

Builders implement effective code generation/compilation
operations

They are specific to a given backend (C, C++, etc.)

Builders are passive components. They are executed by tasks
Fine-grain components, each specific for a given purpose

v Interface Attribute /definition, Component definition, instantiation,
etc.

O Input
— Parameters coming from the AST
v Interface properties, Attribute value, etc.
— Results of other builders
v’ Source code, code pieces, files, backend AST, etc.

o Output

v’ Source code, code pieces, files, backend AST, etc.

Advanced System Technology

Hierarchical Code Generation

<component name="client">

<interface name="r" role="server" Code X
n — M ain!) g
. signature="Main /> . Generation EIEEF L imeriace
<interface name="s" role="client Compilation organizer
signature=“PrinterService"/> Organizer
<content class="ClientImpl"/> H “oronnor
</component> -
organizer

AST
Wal<er *— cont
organizer

Component I— Instance Code
'_ component
name="client" arganizer
r- controller
organizer
Compilation

}_ compilation
pres N organizer

Walker link
'_ organizer

Advanced System Technology

Hierarchical Code Generation

ST Imported Interface
name="client"
| Walkge éﬁkdul&xpor ed Interface

Component

class ClientType : Main, BindingController{

CompDefinition

— T

Serverinterfaces | Clientinterfaces
\

Main, BindingController PrinterService* server ;

=

PrinterService* server ;

}

Advanced System Technology

Task Framework

Task types for code generation & Compilation

lype | instance | source file

name name code
TypeProvider T - | |

| InstanceProvider l T -

SourceCodeProvider | ! T]
SourceCodeConsuzerProvider | 1 T 1 |
SourceFileProvider l 1 1 |71 1
FileProvider | 1 - T
FileConsumerProvider | 1 T

a A complete task graph

Serverlinterfaces

Clientrinterfaces CompDefinitionFile
Compilation

Advanced System Technology

10

Organizer execution order issue

SETEErTTG Imported Interface
name="client"

| Walker Exported Interface

Component

CompDefinition

Advanced System Technology

Component

name="client"

CompDefinition

Task place holders

Component
| Walker Exported Interface
Imported Interface
v v

Serverinterfaces ClientInterfaces

7Y

Advanced System Technology

11

11*_

+ + + F

u.l..

=

View of a realistic
organizer/builder

ThinkC Language

[. [fegeCas)
| (macroC Language

Facory |1

Simplified view of a
realistic ADL

Factory

-

o A?ivenceg Systw e

\ﬂn

12

Outline

O Fractal ADL Compiler for Think

— Plug-in framework

Advanced System Technology

Plug-in framework

0 Assessment
— Very regular but almost huge architecture
v Multiplicity of organizers with different builders
— Presence of many optional modules
v Multiplicity of supported languages
v Different controller implementations
— Lots of ADL files
v Difficult to maintains
v’ Limit the extensibility by third-party developers
O Motivation for plug-in based design
— Implement a sort of “exo-factory”
v Only the strict minimum is hard-wired

— On-the-fly adaptation of the compiler for the compiled
ADL

v Optional modules are loaded at run-time when needed
Advanced System Technology

13

compile ()

Component

name="C1"

content

class="..."

language="c",

C++ organizer/builder

C organizer/builder

i newComponent ("think.CCompiler")

' Std FractalADL factory |

Advanced System.Téchnelﬁ'gy) ban®s s 3 U SIS 1/ "*4)
' LSl L BT Y RN o

Generator with p

lugins

B Fastory }-Ir

T

asT
Walkor

f

Advanced Sysi

’ AN AT R Y ST,

14

TorguageComla

F:C:ﬁi'i{:] N
=]
=]
=]
=]
——— |/
=g |
organizer/builder oo E
g L= =g g
1] L] Db D
with plugins —
FeiancaCofffier ;T&CWMWD Fﬁmmq:]
=} -+ =]
== 0 =]
= =]
MR =EE =
= o
=hal 8
HEHERST S
=Ia
=gl s
Advanced System Technology k J

Conclusion

Assessments
O THINK
— Fractal component implementation in C/C++
— ADL based tool-chain
— Kortex component library for OS construction
O Fractal ADL tool-chain
— Front-End
v' Supports multiple input languages
v/ Builds a unified XML-based AST
— Back-end
v Novel approach with fine grain components
v Dynamic organization on top of the task framework
v Very extensible and multi-target.
v Place order to avoid the organizer execution order issue.
— Plug-in framework
v’ Simplifies the core architecture
v Makes it extensible by third party programmers

v’ Can be applied at any stage of decision
Advanced System Technology

15

Current activities

a Component Model
— Dynamic reconfiguration support in OS (FT R&D, Inria)
— Isolation and access control for secure systems (FT R&D)
— Behavioral analysis (FT R&D, VERIMAG)
— QoS support (FT R&D, INSA Lyon)

o Component library
— Support for multi-processor platforms (STM)
— Customizable multimedia applications (STM)
— Middleware for dynamic configuration management (STM)

o Tool-chain
— Optimization of Think components (FT R&D, STM)
— Multi-target programming support: C, C++, Java (STM)

Q Source code and documentation
http://think.objectweb.org

Advanced System Technology

16

