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a Think

— Fractal implementation in C
— ADL tool-chain for code generation
— Kortex: A component library for OS construction

Q Fractal ADL Compiler for Think
— Front-end
— Back-end
— Plug-in framework

0 Conclusions
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Component implementation

O Binary component model
— Similar to Microsoft COM
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Component implementation

O Binary component model
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Component implementation
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O Binary component model el el
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Fractal/Think Compilation chain
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Kortex: a component library for
OS construction

Q Components for

— Classical OS services:

v’ schedulers, memory management, MMU, exception
handling, file systems, ...

— Communication services:
v TCP/IP, PPP, GPRS, Bluetooth, radio, ...
— Device drivers:

v’ framebuffer, touchpanel, keyboard, serial port, disk,
ethernet, ...

O Supported Platforms
— ARM (iPAQ, Apple iPod, ixp425), AVR, PowerPC, ST200
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Outline

O Fractal ADL Compiler for Think
— Front-end
— Back-end
— Plug-in framework
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Code generation tool-chain for
Fractal ADL

Q Starting point : Fractal ADL Factory
— Deployment from ADL for Fractal/Java
v Implemented in Fractal/Java
v' Component-based architecture described in Fractal ADL
— Modular
v Clear, accessible and modifiable architecture

O Contribution

— Support for code generation & compilation

v'New and multiple input languages (Think ADL, Think IDL,
join-patterns, etc.)

v Support for new and multiple implementation languages
— Extensibility improvement

v Easy support for new ADL features

v Allow for third-party developer extensions with plug-ins
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Overview
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Front-end
Translation of input files to an AST

O Specification
— Input: ADL, IDL and component implementation files (C,
C++, Java, etc.).
— Output: Unified Abstract Syntax Tree

O Main features
— Extensible for supporting new input languages.
— Fine-grain components each responsible for a specific
analysis.
— Robust and extensible AST implementation.
v Dynamically generated implementation of AST nodes.
v Programmable node factory based on DTD.

v’ Extension transparency for modules that are not involved
by thanks to multi-facet nodes.
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Internal architecture

Unbound Binding Imp! w«n Cor mp »OL

AST o Hz fH 2 e
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Q The loader is designed as a component-
chain
— Very modular and extensible
— Allows for multiple parsers at different stages
— Simple programming pattern "coe 2¢(®iring name)t

myCheckOperation(myAST);
return myAST ;
}
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Node myAST = client->load(name) ;
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Code generator & Compiler

Q Specification
— Input : A correct AST
— Output :
v Generated code
v Compilation
O Main features

— Modular: code generation is split into fine-grain

components

— Hierarchical and collaborative: components may
aggregate code pieces that are generated by others

— Extensible: components can be added, removed or
modified without impact on the rest of modules.

— Retargetable : supports multiple backends for different

general purpose programming languages.
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Internal Architecture

— Organizers el  bulcer | — Builders
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O Task framework )
v Tasks reifies code generation and compilation operations
v Dependency declarations
v’ Execution of tasks in a correct order
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Organizers

O Maestro of the code generation

— Input : Correct AST ggﬂzmﬁm Definition Code o )

— Output : A task graph g‘,’g’gfji';;‘;’" m:m‘
e et M
0 Component based visitor pattern - e B
— AST walkers F Segeizer JHHTH

v Walks recursively in the AST I— Instance Code H companens

v Invoke connected visitors for each H ==
component node H e fTH
— Component visitors : Compilation o) ] L,

v Responsible for a specific purpose H et

H Ly
organizer

v’ Create the build tasks
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Builders

O Features

Builders implement effective code generation/compilation
operations

They are specific to a given backend (C, C++, etc.)

Builders are passive components. They are executed by tasks
Fine-grain components, each specific for a given purpose

v Interface Attribute /definition, Component definition, instantiation,
etc.

O Input
— Parameters coming from the AST
v Interface properties, Attribute value, etc.
— Results of other builders
v’ Source code, code pieces, files, backend AST, etc.

o Output

v’ Source code, code pieces, files, backend AST, etc.
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Hierarchical Code Generation
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Hierarchical Code Generation

ST Imported Interface
name="client"
| Walkge éﬁkdul&xpor ed Interface

Component

class ClientType : Main, BindingController{

CompDefinition

— T

Serverinterfaces | Clientinterfaces
\

Main, BindingController PrinterService* server ;

=

PrinterService* server ;

}
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Task Framework

Task types for code generation & Compilation

lype | instance | source file

name name code
TypeProvider T - | |

| InstanceProvider l T -

SourceCodeProvider | ! T ]
SourceCodeConsuzerProvider | 1 T 1 |
SourceFileProvider l 1 1 |71 1
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a A complete task graph
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Organizer execution order issue

SETEErTTG Imported Interface
name="client"

| Walker Exported Interface

Component

CompDefinition
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Component

name="client"

CompDefinition

Task place holders
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Outline

O Fractal ADL Compiler for Think

— Plug-in framework
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Plug-in framework

0 Assessment
— Very regular but almost huge architecture
v Multiplicity of organizers with different builders
— Presence of many optional modules
v Multiplicity of supported languages
v Different controller implementations
— Lots of ADL files
v Difficult to maintains
v’ Limit the extensibility by third-party developers
O Motivation for plug-in based design
— Implement a sort of “exo-factory”
v Only the strict minimum is hard-wired

— On-the-fly adaptation of the compiler for the compiled
ADL

v Optional modules are loaded at run-time when needed
Advanced System Technology
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compile ()

Component
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Conclusion

Assessments
O THINK
— Fractal component implementation in C/C++
— ADL based tool-chain
— Kortex component library for OS construction
O Fractal ADL tool-chain
— Front-End
v' Supports multiple input languages
v/ Builds a unified XML-based AST
— Back-end
v Novel approach with fine grain components
v Dynamic organization on top of the task framework
v Very extensible and multi-target.
v Place order to avoid the organizer execution order issue.
— Plug-in framework
v’ Simplifies the core architecture
v Makes it extensible by third party programmers

v’ Can be applied at any stage of decision
Advanced System Technology
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Current activities

a Component Model
— Dynamic reconfiguration support in OS (FT R&D, Inria)
— Isolation and access control for secure systems (FT R&D)
— Behavioral analysis (FT R&D, VERIMAG)
— QoS support (FT R&D, INSA Lyon)

o Component library
— Support for multi-processor platforms (STM)
— Customizable multimedia applications (STM)
— Middleware for dynamic configuration management (STM)

o Tool-chain
— Optimization of Think components (FT R&D, STM)
— Multi-target programming support: C, C++, Java (STM)

Q Source code and documentation
http://think.objectweb.org
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