
1

Advanced System Technology

THINKTHINK
C Implementation of FractalC Implementation of Fractal

and its and its ADL tool-chainADL tool-chain
Fractal Workshop

July 2006
Matthieu Leclercq (ST), Olivier Lobry (France Telecom),

Erdem Özcan (ST, INRIA), Juraj Polakovic (France
Telecom),

Jean-Bernard Stefani (INRIA)

2

Advanced System Technology

OutlineOutline
 Think

– Fractal implementation in C
– ADL tool-chain for code generation
– Kortex: A component library for OS construction

 Fractal ADL Compiler for Think
– Front-end
– Back-end
– Plug-in framework

 Conclusions

2

3

Advanced System Technology

Component implementationComponent implementation

 Binary component model
– Similar to Microsoft COM

4

Advanced System Technology

Component implementationComponent implementation
 Binary component model

– Similar to Microsoft COM

 Support for Fractal interfaces
– Control interface code
– Control data

3

5

Advanced System Technology

Component implementationComponent implementation
 Binary component model

– Similar to Microsoft COM

 Support for Fractal interfaces
– Control interface code
– Control data

 Code generation & Compilation
– Help the programming of

primitive components
– Generate code for composite

components
– Bootstrap code generation

6

Advanced System Technology

Fractal/Think Compilation chainFractal/Think Compilation chain

IDL

Interface
declarations

ADL

Composition
descriptions

.s

Component
implementations

.c

Target independent
Target dependent

Binary
components

Dynamic
Loader

Target’s
C compiler

.o

Binary
image

Target’s
linker

Bootloader

.c
.c

.h

…
…

Optims Check
ADL

 compiler
IDL

compiler

ADL Compiler

4

7

Advanced System Technology

KortexKortex: a component library for: a component library for
OS constructionOS construction

 Components for
– Classical OS services:

 schedulers, memory management, MMU, exception
handling, file systems, …

– Communication services:
 TCP/IP, PPP, GPRS, Bluetooth, radio, …

– Device drivers:
 framebuffer, touchpanel, keyboard, serial port, disk,

ethernet, …

 Supported Platforms
– ARM (iPAQ, Apple iPod, ixp425), AVR, PowerPC, ST200

8

Advanced System Technology

OutlineOutline
 Think

– Fractal implementation in C
– ADL tool-chain
– Kortex: A component library for OS construction

 Fractal ADL Compiler for Think
– Front-end
– Back-end
– Plug-in framework

 Conclusions

5

9

Advanced System Technology

Code generation tool-chain forCode generation tool-chain for
Fractal ADLFractal ADL

 Starting point : Fractal ADL Factory
– Deployment from ADL for Fractal/Java

 Implemented in Fractal/Java
Component-based architecture described in Fractal ADL

– Modular
Clear, accessible and modifiable architecture

 Contribution
– Support for code generation & compilation

New and multiple input languages (Think ADL, Think IDL,
join-patterns, etc.)

Support for new and multiple implementation languages
– Extensibility improvement

Easy support for new ADL features
Allow for third-party developer extensions with plug-ins

10

Advanced System Technology

OverviewOverview

 High-level Architecture
– Front-end : Loader
– Back-end :

Organizer
 Task framework
Builder

 Workflow

6

11

Advanced System Technology

Front-endFront-end
Translation of input files to an ASTTranslation of input files to an AST
 Specification

– Input: ADL, IDL and component implementation files (C,
C++, Java, etc.).

– Output: Unified Abstract Syntax Tree
 Main features

– Extensible for supporting new input languages.
– Fine-grain components each responsible for a specific

analysis.
– Robust and extensible AST implementation.

Dynamically generated implementation of AST nodes.
Programmable node factory based on DTD.
Extension transparency for modules that are not involved

by thanks to multi-facet nodes.

12

Advanced System Technology

Internal architectureInternal architecture

 The loader is designed as a component-
chain
– Very modular and extensible
– Allows for multiple parsers at different stages
– Simple programming pattern Node load(String name){

 Node myAST = client->load(name) ;
 myCheckOperation(myAST);
 return myAST ;
}

7

13

Advanced System Technology

OutlineOutline
 Think

– Fractal implementation in C
– ADL tool-chain
– Kortex: A component library for OS construction

 Fractal ADL Compiler for Think
– Front-end
– Back-end
– Plug-in framework

 Conclusions

14

Advanced System Technology

Code generator & CompilerCode generator & Compiler
 Specification

– Input : A correct AST
– Output :

Generated code
Compilation

 Main features
– Modular: code generation is split into fine-grainsplit into fine-grain

componentscomponents
– Hierarchical and collaborative: components maycomponents may

aggregate code pieces that are generated by othersaggregate code pieces that are generated by others
– Extensible: components can be added, removed orcomponents can be added, removed or

modifiedmodified without impact on the rest of modules.
– Retargetable : supports multiple backends for different

general purpose programming languages.

8

15

Advanced System Technology

Internal ArchitectureInternal Architecture

 Task framework
 Tasks reifies code generation and compilation operations
Dependency declarations
Execution of tasks in a correct order

– Organizers
Creates code
generation and
compilation tasks

– Builders
Provides effective
implementation of
tasks.

16

Advanced System Technology

OrganizersOrganizers
 Maestro of the code generation

– Input : Correct AST
– Output : A task graph

 Component based visitor pattern
– AST walkers

 Walks recursively in the AST
 Invoke connected visitors for each

component node
– Component visitors :

 Responsible for a specific purpose
 Create the build tasks

9

17

Advanced System Technology

BuildersBuilders
 Features

– Builders implement effective code generation/compilation
operations

– They are specific to a given backend (C, C++, etc.)
– Builders are passive components. They are executed by tasks
– Fine-grain components, each specific for a given purpose

 Interface Attribute /definition, Component definition, instantiation,
etc.

 Input
– Parameters coming from the AST

 Interface properties, Attribute value, etc.
– Results of other builders

 Source code, code pieces, files, backend AST, etc.
 Output

 Source code, code pieces, files, backend AST, etc.

18

Advanced System Technology

Hierarchical Code GenerationHierarchical Code Generation

<component name="client">
 <interface name="r" role="server"
 signature=“Main"/>
 <interface name="s" role="client"
 signature=“PrinterService"/>
 <content class="ClientImpl"/>
</component>

Component

name="client"

content
itf r,

server

itf s,

client

10

19

Advanced System Technology

class ClientType : Main, BindingController{

 PrinterService* server ;

}

Hierarchical Code GenerationHierarchical Code Generation
Component

name="client"

content
itf r,

server

itf s,

client

Imported Interface

Exported Interface

Component

Walker

Task Graph

ServerInterfaces ClientInterfaces

CompDefinition

Main, BindingController

Scheduler

PrinterService* server ;

20

Advanced System Technology

Task FrameworkTask Framework

Task types for code generation & Compilation

 A complete task graph

ServerInterfaces

ClientrInterfaces

CompDefinition CompDefinitionFile

CompDefinitionFile
Compilation

HeaderFIle HeaderFIle HeaderFIle

11

21

Advanced System Technology

Organizer execution order issueOrganizer execution order issue
Component

name="client"

content
itf r,

server

itf s,

client

Imported Interface

Exported Interface

Component

Walker

Task Graph

CompDefinition

22

Advanced System Technology

Task place holdersTask place holders
Component

name="client"

content
itf r,

server

itf s,

client

Component

Exported Interface

Imported Interface

Walker

Task Graph

CompDefinition

PH PH

ServerInterfaces ClientInterfaces

12

23

Advanced System Technology

View of a realisticView of a realistic
organizer/builderorganizer/builder

24

Advanced System Technology

Simplified view of aSimplified view of a
realistic ADLrealistic ADL
FactoryFactory

13

25

Advanced System Technology

OutlineOutline
 Think

– Fractal implementation in C
– ADL tool-chain
– Kortex: A component library for OS construction

 Fractal ADL Compiler for Think
– Front-end
– Back-end
– Plug-in framework

 Conclusions

26

Advanced System Technology

Plug-in frameworkPlug-in framework
 Assessment

– Very regular but almost huge architecture
Multiplicity of organizers with different builders

– Presence of many optional modules
Multiplicity of supported languages
Different controller implementations

– Lots of ADL files
Difficult to maintains
 Limit the extensibility by third-party developers

 Motivation for plug-in based design
– Implement a sort of “exo-factory”

Only the strict minimum is hard-wired
– On-the-fly adaptation of the compiler for the compiled

ADL
Optional modules are loaded at run-time when needed

14

27

Advanced System Technology

PluginPlugin

Plugin Manager

Std FractalADL factory

C++ organizer/builder

Language

Selector

loadCompiler("C")

newComponent("think.CCompiler")

C organizer/builder

compile()

compile()

Component

name="C1"

content

class="..."

language="c"

itf itf

28

Advanced System Technology

Generator with Generator with pluginsplugins

15

29

Advanced System Technology

organizer/builderorganizer/builder
with with pluginsplugins

30

Advanced System Technology

ConclusionConclusion
AssessmentsAssessments

 THINK
– Fractal component implementation in C/C++
– ADL based tool-chain
– Kortex component library for OS construction

 Fractal ADL tool-chain
– Front-End

 Supports multiple input languages
 Builds a unified XML-based AST

– Back-end
 Novel approach with fine grain components
 Dynamic organization on top of the task framework
 Very extensible and multi-target.
 Place order to avoid the organizer execution order issue.

– Plug-in framework
 Simplifies the core architecture
 Makes it extensible by third party programmers
 Can be applied at any stage of decision

16

31

Advanced System Technology

Current activitiesCurrent activities
 Component Model

– Dynamic reconfiguration support in OS (FT R&D, Inria)
– Isolation and access control for secure systems (FT R&D)
– Behavioral analysis (FT R&D, VERIMAG)
– QoS support (FT R&D, INSA Lyon)

 Component library
– Support for multi-processor platforms (STM)
– Customizable multimedia applications (STM)
– Middleware for dynamic configuration management (STM)

 Tool-chain
– Optimization of Think components (FT R&D, STM)
– Multi-target programming support: C, C++, Java (STM)

 Source code and documentation
http://think.objectweb.org

