UML 2.0 Components and
Fractal: An Analysis

Vladimir Mencl*? and Matej Polak?

(DUnited Nations University
International Institute for Software Technology

UNU-IIST
1. United Nations http://www.iist.unu.edu/
<> University
intermational st fo (@)Charles University, Prague

Distributed System Research Group
http://nenya.ms.mff.cuni.cz/

Outline

* Motivations & objectives

« UML 2.0 components: a gentle overview
= Interfaces, ports, and connectors
= subcomponents

* Fractal components with UML 2.0
= evaluation and mapping

* Implementation
= modeling tool plug-in
e Conclusion

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

Motivations & Objectives

 Advanced component models exist

« UML 2.0 now has Components with
= provided and required interfaces
= hierarchy
Note: UML 1.x Components were
deployment/packaging units only
* Objectives

= Analyze UML 2.0 — “does it fit the needs of
advanced component models” ?

* including “extra features” — collection interfaces, “collection
subcomponents”....

= Propose a mapping for Fractal

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

UML 2.0 Overview: Key Features

« Component: now “as we now it”
= hierarchy / nested components
= provided and required interfaces

e Key concepts:
= StructuredClassifier
 functionality decomposed into parts
= EncapsulatedClassifier
e communication through Ports

= Port
» has provided and required Interfaces
» has multiplicity (=> collection interfaces)

= Component
 combines these features

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

UML 2.0: Metamodel — relevant parts

Classifier ConnectableElement
JA\ JAY
Class StructuredClassifier mam Property
JA A A
EncapsulatedClassifier Port
JAN V+/require(K/ +/provided
+/provided
Component —>>|Interface
+/requwed>

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

Subcomponents

 Two ways to model subcomponents:

« Containment
= Component is a NameSpace

= may own a Component, InstanceSpecification,
Class, Interface

= owned Component is a type definition only
=> must be accompanied with an InstanceSpecification

= ... no multiplicities

e As parts

= Component is a StructuredClassifier

* may own parts
= part: has type, multiplicity

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

‘Figure: Subcomponents, Connectors ...

ran

FEunindlfc
%mdelegatm v .::::.

Wy'rd Runlfc
wn r=in hMainvwnd rJn
wnd [] Bunvindifc
hainiivnd {
@ wnd []
ran fn
li=t :

ArtefactListwnd [*] Artefact Listvind

Connectors

Connectors ~ bindings In Fractal —

= connect provisions and requirements
» precisely: a ConnectableElement

» Port and Property are a ConnectableElement, Interface is not!
= raised in UML2.0 FTF issues 7247-7251 ... postponed

= link to part (subComponent) via partWithPort
 Technical problems: connector can’t be linked to:

= |Interfaces

= |nstanceSpecification (nor the Ports/Interfaces of the
subcomponent it represents)

 Two types of connectors
= delegate — “vertical”)
= assembly — “horizontal”
= can be mapped to Fractal bindings and SOFA (3 kinds)

Components: Attributes & Methods

« Component is a specialization of Class

 may have attributes and methods

= attributes — configuration parameters
(“attributes, properties”) of components
= methods declarations:

« operations directly provided in Component
e concept used in Corba CCM

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

Components: Realization, Inheritance

Realization:
“*How the component type will be implemented”

* Implement directly (owned methods)

e realizing classifier
= point to an implementing class

« a Component may inherit

= from another Component
« Component (type) inheritance

= from a Class, Interface
« exact meaning not given

* method and attribute declarations — as if specified for the
Component

* method implementations — implicit realization

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

10

Summary

e abstractions match the needs of Fractal
= component types
= Interfaces
= subcomponents
= bindings
= attributes
= component implementation

= It Is possibly to have a Fractal mapping ...
... but It IS necessary to propose one!

= Goal: cover all Fractal ADL constructs

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

11

Fractal Mapping

o Stereotype <<FractalComponent>>
= I[dentify components designed for Fractal
= store tagged values
 Mapping specifics
= we consider Java implementations of Fractal

= and assume interface signhatures and content
descriptors are FQ Java class names

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 12

Fractal Mapping: Interfaces

 Interfaces: both options considered.

= Direct Interfaces:
o Automatically assigned unique names.
 Mandatory interface with single cardinality.

= Interfaces via Ports:
« Only one interface per port.

e Position of interface client/server.
« Port multiplicity determines cardinality+contingency.

= The UML Interface determining the type Is
mapped to a Java interface.

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 13

Fractal Mapping: Subcomponents

« Fractal specific feature: embedded
subcomponent definition

= Nested UML Component definition similar
* but defines only component type

= Only with InstanceSpecification has the desired
meaning
 Mapping: pair Component+instanceSpecification
e Subcomponent (<component definition="...”)

= either as part or InstanceSpecification

» InstanceSpecification with path expression =>
shared component

« Connectors: both assembly and delegate
map to bindings

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

14

Fractal Mapping (cont.)

o Attributes => component attributes

= AttributeController interface generated as a
part of mapping

* type restrictions:
UML must use primitive types only.

* Generalization =>
= component inheritance

= content class inherits from a base class
+ a number of interfaces

 Realization => content class selected,
otherwise generated

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

15

Fractal Mapping: Behavior Specifications

e Initial simple approach:
= tagged value BehaviorProtocol

« A Component may own a Behavior

o Suitable metaclass OpagueBehavior

= Attributes body and language can be mapped
to new Fractal ADL Behavior element

= Can accommodate recent as well as earlier
behavior specification mechanisms for Fractal

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 16

Fractal Mapping: Implementation

 Mapping implemented as a plug-in for
Enterprise Architect

= Generates Fractal ADL + Java source code
e Java Interfaces, Attribute Controller,
skeleton of content class.
= Possible future extension:

* Reverse engineer Fractal ADL
...and possibly also runtime Fractal representation

« Additional Generator for Fractlet (Fractal
Implementation based on Java 1.5 annotations)

e Generate Initialization code instead of ADL

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

17

Evaluation: UML vs. Fractal

* Fractal covered
= Fractal ADL can be modeled in UML
= partly due to flexibility of UML
= only missing piece: component arguments

« UML not covered

= Not everything syntactically correct in UML
* has a meaning in Fractal
 is legal in Fractal
* makes sense to map
= Part of our mapping: a number of constraints for
UML models to be compliant with the mapping
 details in Polak M.: UML 2.0 Components, Master’s Thesis,
Charles Univ., advisor: Vladimir Mencl, Sep 2005.
e Decisions need to be made in mappings
e e.q., Corba CM Profile

Other Component Models: SOFA

 Two levels of component specification
= frame, architecture

=> two stereotypes
e <<SOFAFrame>>, <<SOFAArchitecture>>

= architecture linked to frame via a <<realize>>
dependency

= only an architecture may contain subcomponents, and
their type must be a frame
e Other minor differences

= SOFA allows constant definitions in frames
* mapped as readOnly attributes with an initialization value

= Multiplicities on Ports mapped as arrays of Interfaces
= Behavior: Only Behavior Protocols supported in SOFA

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

19

Conclusion

UML 2.0: a lot is underspecified or unspecified

Some flexibility intentional
= Left up to profile or tool developers.
e e.g., meaning of “A Component inherits from a Class”.
Some issues not handled — metamodel does
not permit some needed constructs.

= e.d., link a Connector to ports of a subcomponent
specified as an InstanceSpecification

= Tools use proprietary metamodel modifications.
“Hacks” => Negative impact on model interchangeability

 UML very rich, a selection of constructs mapped.

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

20

Future work:

Implementation
= Various extensions possible.

Propose fixes for UML
= new model element Componentinstance

Look at additional component models.

References

= Polak, M.: UML 2.0 Components, Master’s Thesis,
Charles Univ., advisor: Vladimir Mencl, Sep 2005.

= http://nenya.ms.mff.cuni.cz/~mencl/
projects/uml20components-thesis.html

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006

21

