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Motivations & Objectives

• Advanced component models exist
• UML 2.0 now has Components with 

provided and required interfaces
hierarchy

Note: UML 1.x Components were 
deployment/packaging units only

• Objectives
Analyze UML 2.0 — “does it fit the needs of 
advanced component models” ?

• including “extra features” — collection interfaces, “collection 
subcomponents”....

Propose a mapping for Fractal
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UML 2.0 Overview: Key Features

• Component: now “as we now it”
hierarchy / nested components
provided and required interfaces

• Key concepts:
StructuredClassifier

• functionality decomposed into parts
EncapsulatedClassifier

• communication through Ports
Port

• has provided and required Interfaces
• has multiplicity (=> collection interfaces)

Component
• combines these features
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UML 2.0: Metamodel — relevant parts

Component

Clas s StructuredClas s ifier

Encaps ulatedClas s ifier

Clas s ifier

Interface

Port

+/provided
*

+/required
*

ConnectableElement

Property+*
/part

+/provided
*

+/required
*
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Subcomponents

• Two ways to model subcomponents:
• Containment

Component is a NameSpace
may own a Component, InstanceSpecification, 

Class, Interface
owned Component is a type definition only 
=> must be accompanied with an InstanceSpecification

... no multiplicities
• As parts

Component is a StructuredClassifier
• may own parts

part: has type, multiplicity



Figure: Subcomponents, Connectors ...



Connectors

Connectors ~ bindings in Fractal —
connect provisions and requirements

• precisely: a ConnectableElement
• Port and Property are a ConnectableElement, Interface is not!

raised in UML2.0 FTF issues 7247-7251 ... postponed

link to part (subComponent) via partWithPort
• Technical problems: connector can’t be linked to:

Interfaces
InstanceSpecification (nor the Ports/Interfaces of the 
subcomponent it represents)

• Two types of connectors
delegate — “vertical”) 
assembly — “horizontal” 
can be mapped to Fractal bindings and SOFA (3 kinds)
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Components: Attributes & Methods

• Component is a specialization of Class

• may have attributes and methods
attributes — configuration parameters 

(“attributes, properties”) of components
methods declarations: 

• operations directly provided in Component 
• concept used in Corba CCM
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Components: Realization, Inheritance

Realization: 
“How the component type will be implemented”

• implement directly (owned methods)
• realizing classifier

point to an implementing class

• a Component may inherit
from another Component

• Component (type) inheritance
from a Class, Interface

• exact meaning not given
• method and attribute declarations — as if specified for the 

Component
• method implementations — implicit realization
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Summary

• abstractions match the needs of Fractal
component types
interfaces
subcomponents
bindings
attributes
component implementation

It is possibly to have a Fractal mapping ...
... but it is necessary to propose one!
Goal: cover all Fractal ADL constructs
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Fractal Mapping

• Stereotype <<FractalComponent>>
identify components designed for Fractal
store tagged values

• Mapping specifics
we consider Java implementations of Fractal
and assume interface signatures and content 
descriptors are FQ Java class names
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Fractal Mapping: Interfaces

• Interfaces: both options considered.
Direct Interfaces:

• Automatically assigned unique names.
• Mandatory interface with single cardinality.

Interfaces via Ports:
• Only one interface per port.
• Position of interface client/server.
• Port multiplicity determines cardinality+contingency.

The UML Interface determining the type is 
mapped to a Java interface.
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Fractal Mapping: Subcomponents

• Fractal specific feature: embedded 
subcomponent definition

Nested UML Component definition similar
• but defines only component type

Only with InstanceSpecification has the desired 
meaning

• Mapping: pair Component+InstanceSpecification

• Subcomponent (<component definition=“...”)
either as part or InstanceSpecification

• InstanceSpecification with path expression => 
shared component

• Connectors: both assembly and delegate 
map to bindings



Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 15

Fractal Mapping (cont.)

• Attributes => component attributes
AttributeController interface generated as a 
part of mapping

• type restrictions: 
UML must use primitive types only.

• Generalization => 
component inheritance
content class inherits from a base class 
+ a number of interfaces

• Realization => content class selected, 
otherwise generated
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Fractal Mapping: Behavior Specifications

• Initial simple approach:
tagged value BehaviorProtocol

• A Component may own a Behavior
• Suitable metaclass OpaqueBehavior

Attributes body and language can be mapped 
to new Fractal ADL Behavior element
Can accommodate recent as well as earlier 
behavior specification mechanisms for Fractal
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Fractal Mapping: Implementation

• Mapping implemented as a plug-in for 
Enterprise Architect

Generates Fractal ADL + Java source code
• Java Interfaces, Attribute Controller, 

skeleton of content class.
Possible future extension: 

• Reverse engineer Fractal ADL
...and possibly also runtime Fractal representation

• Additional Generator for Fractlet (Fractal 
implementation based on Java 1.5 annotations)

• Generate initialization code instead of ADL



Evaluation: UML vs. Fractal

• Fractal covered 
Fractal ADL can be modeled in UML
partly due to flexibility of UML
only missing piece: component arguments

• UML not covered
Not everything syntactically correct in UML

• has a meaning in Fractal
• is legal in Fractal
• makes sense to map

Part of our mapping: a number of constraints for 
UML models to be compliant with the mapping

• details in Polak M.: UML 2.0 Components, Master’s Thesis, 
Charles Univ., advisor: Vladimir Mencl, Sep 2005.

• Decisions need to be made in mappings
• e.g., Corba CM Profile
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Other Component Models: SOFA

• Two levels of component specification
frame, architecture

=> two stereotypes
• <<SOFAFrame>>, <<SOFAArchitecture>>

architecture linked to frame via a <<realize>> 
dependency
only an architecture may contain subcomponents, and 
their type must be a frame

• Other minor differences
SOFA allows constant definitions in frames

• mapped as readOnly attributes with an initialization value
Multiplicities on Ports mapped as arrays of Interfaces
Behavior: Only Behavior Protocols supported in SOFA
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Conclusion

• UML 2.0: a lot is underspecified or unspecified
• Some flexibility intentional

Left up to profile or tool developers.
• e.g., meaning of “A Component inherits from a Class”.

• Some issues not handled — metamodel does 
not permit some needed constructs.

e.g., link a Connector to ports of a subcomponent 
specified as an InstanceSpecification
Tools use proprietary metamodel modifications. 

“Hacks” => Negative impact on model interchangeability

• UML very rich, a selection of constructs mapped.
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Future work: 

• Implementation
Various extensions possible.

• Propose fixes for UML
new model element ComponentInstance

• Look at additional component models.

• References
Polak, M.: UML 2.0 Components, Master’s Thesis, 
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