
UML 2.0 Components and
Fractal: An Analysis

Vladimir Mencl1,2 and Matej Polak2

(1)United Nations University
International Institute for Software Technology

UNU-IIST
http://www.iist.unu.edu/

(2)Charles University, Prague
Distributed System Research Group
http://nenya.ms.mff.cuni.cz/

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 2

Outline

• Motivations & objectives
• UML 2.0 components: a gentle overview

interfaces, ports, and connectors
subcomponents

• Fractal components with UML 2.0
evaluation and mapping

• Implementation
modeling tool plug-in

• Conclusion

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 3

Motivations & Objectives

• Advanced component models exist
• UML 2.0 now has Components with

provided and required interfaces
hierarchy

Note: UML 1.x Components were
deployment/packaging units only

• Objectives
Analyze UML 2.0 — “does it fit the needs of
advanced component models” ?

• including “extra features” — collection interfaces, “collection
subcomponents”....

Propose a mapping for Fractal

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 4

UML 2.0 Overview: Key Features

• Component: now “as we now it”
hierarchy / nested components
provided and required interfaces

• Key concepts:
StructuredClassifier

• functionality decomposed into parts
EncapsulatedClassifier

• communication through Ports
Port

• has provided and required Interfaces
• has multiplicity (=> collection interfaces)

Component
• combines these features

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 5

UML 2.0: Metamodel — relevant parts

Component

Clas s StructuredClas s ifier

Encaps ulatedClas s ifier

Clas s ifier

Interface

Port

+/provided
*

+/required
*

ConnectableElement

Property+*
/part

+/provided
*

+/required
*

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 6

Subcomponents

• Two ways to model subcomponents:
• Containment

Component is a NameSpace
may own a Component, InstanceSpecification,

Class, Interface
owned Component is a type definition only
=> must be accompanied with an InstanceSpecification

... no multiplicities
• As parts

Component is a StructuredClassifier
• may own parts

part: has type, multiplicity

Figure: Subcomponents, Connectors ...

Connectors

Connectors ~ bindings in Fractal —
connect provisions and requirements

• precisely: a ConnectableElement
• Port and Property are a ConnectableElement, Interface is not!

raised in UML2.0 FTF issues 7247-7251 ... postponed

link to part (subComponent) via partWithPort
• Technical problems: connector can’t be linked to:

Interfaces
InstanceSpecification (nor the Ports/Interfaces of the
subcomponent it represents)

• Two types of connectors
delegate — “vertical”)
assembly — “horizontal”
can be mapped to Fractal bindings and SOFA (3 kinds)

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 9

Components: Attributes & Methods

• Component is a specialization of Class

• may have attributes and methods
attributes — configuration parameters

(“attributes, properties”) of components
methods declarations:

• operations directly provided in Component
• concept used in Corba CCM

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 10

Components: Realization, Inheritance

Realization:
“How the component type will be implemented”

• implement directly (owned methods)
• realizing classifier

point to an implementing class

• a Component may inherit
from another Component

• Component (type) inheritance
from a Class, Interface

• exact meaning not given
• method and attribute declarations — as if specified for the

Component
• method implementations — implicit realization

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 11

Summary

• abstractions match the needs of Fractal
component types
interfaces
subcomponents
bindings
attributes
component implementation

It is possibly to have a Fractal mapping ...
... but it is necessary to propose one!
Goal: cover all Fractal ADL constructs

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 12

Fractal Mapping

• Stereotype <<FractalComponent>>
identify components designed for Fractal
store tagged values

• Mapping specifics
we consider Java implementations of Fractal
and assume interface signatures and content
descriptors are FQ Java class names

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 13

Fractal Mapping: Interfaces

• Interfaces: both options considered.
Direct Interfaces:

• Automatically assigned unique names.
• Mandatory interface with single cardinality.

Interfaces via Ports:
• Only one interface per port.
• Position of interface client/server.
• Port multiplicity determines cardinality+contingency.

The UML Interface determining the type is
mapped to a Java interface.

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 14

Fractal Mapping: Subcomponents

• Fractal specific feature: embedded
subcomponent definition

Nested UML Component definition similar
• but defines only component type

Only with InstanceSpecification has the desired
meaning

• Mapping: pair Component+InstanceSpecification

• Subcomponent (<component definition=“...”)
either as part or InstanceSpecification

• InstanceSpecification with path expression =>
shared component

• Connectors: both assembly and delegate
map to bindings

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 15

Fractal Mapping (cont.)

• Attributes => component attributes
AttributeController interface generated as a
part of mapping

• type restrictions:
UML must use primitive types only.

• Generalization =>
component inheritance
content class inherits from a base class
+ a number of interfaces

• Realization => content class selected,
otherwise generated

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 16

Fractal Mapping: Behavior Specifications

• Initial simple approach:
tagged value BehaviorProtocol

• A Component may own a Behavior
• Suitable metaclass OpaqueBehavior

Attributes body and language can be mapped
to new Fractal ADL Behavior element
Can accommodate recent as well as earlier
behavior specification mechanisms for Fractal

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 17

Fractal Mapping: Implementation

• Mapping implemented as a plug-in for
Enterprise Architect

Generates Fractal ADL + Java source code
• Java Interfaces, Attribute Controller,

skeleton of content class.
Possible future extension:

• Reverse engineer Fractal ADL
...and possibly also runtime Fractal representation

• Additional Generator for Fractlet (Fractal
implementation based on Java 1.5 annotations)

• Generate initialization code instead of ADL

Evaluation: UML vs. Fractal

• Fractal covered
Fractal ADL can be modeled in UML
partly due to flexibility of UML
only missing piece: component arguments

• UML not covered
Not everything syntactically correct in UML

• has a meaning in Fractal
• is legal in Fractal
• makes sense to map

Part of our mapping: a number of constraints for
UML models to be compliant with the mapping

• details in Polak M.: UML 2.0 Components, Master’s Thesis,
Charles Univ., advisor: Vladimir Mencl, Sep 2005.

• Decisions need to be made in mappings
• e.g., Corba CM Profile

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 19

Other Component Models: SOFA

• Two levels of component specification
frame, architecture

=> two stereotypes
• <<SOFAFrame>>, <<SOFAArchitecture>>

architecture linked to frame via a <<realize>>
dependency
only an architecture may contain subcomponents, and
their type must be a frame

• Other minor differences
SOFA allows constant definitions in frames

• mapped as readOnly attributes with an initialization value
Multiplicities on Ports mapped as arrays of Interfaces
Behavior: Only Behavior Protocols supported in SOFA

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 20

Conclusion

• UML 2.0: a lot is underspecified or unspecified
• Some flexibility intentional

Left up to profile or tool developers.
• e.g., meaning of “A Component inherits from a Class”.

• Some issues not handled — metamodel does
not permit some needed constructs.

e.g., link a Connector to ports of a subcomponent
specified as an InstanceSpecification
Tools use proprietary metamodel modifications.

“Hacks” => Negative impact on model interchangeability

• UML very rich, a selection of constructs mapped.

Vladimir Mencl, Matej Polak
Fractal Workshop, ECOOP 2006, Nantes, France, July 3rd, 2006 21

Future work:

• Implementation
Various extensions possible.

• Propose fixes for UML
new model element ComponentInstance

• Look at additional component models.

• References
Polak, M.: UML 2.0 Components, Master’s Thesis,
Charles Univ., advisor: Vladimir Mencl, Sep 2005.
http://nenya.ms.mff.cuni.cz/~mencl/
projects/uml20components-thesis.html

