
Combining Reflective Component Model
and Reflective Middleware

ReflectAllReflectAll

Fractal@ECOOP2006, Nantes, France

Gang HUANG, Ling LAN, Jie YANG, Hong MEI

School of Electronics Engineering and Computer Science
Peking University, Beijing, 100871, China

July 3, 2006, Nantes, France

2 huanggang@sei.pku.edu.cn

Introduction to SEI@PKU

Software Engineering Institute in Peking Univ.
7 full professors, 10 associate professors, 9 assistant
professors
>30 Ph.D students, >70 graduates

• The biggest SE team in Chinese universities
Cover almost all areas of software engineering with
emphasis on component based reuse

• domain engineering, object oriented modeling, software
architecture, middleware, component repository, testing,
program comprehension, software process

http://www.sei.pku.edu.cn

3 huanggang@sei.pku.edu.cn

Background of This Work
Component Model

Fractal & ABC
• Software architecture group is the core group of ABC
• ABC/ADL & ABCTool
• 7 PhD students, 6 graduates

Next Generation J2EE
JonAS & PKUAS

• PKUAS group is the biggest group in SEI@PKU
• 7 PhD students, 5 graduates in experience sub-group
• >20 graduates in practice sub-group

Autonomic System Management
JADE & ABC/PKUAS

4 huanggang@sei.pku.edu.cn

Agenda

Motivation
Why leverage reflective component and reflective
middleware

Prototype and Demo
Prototype on J2EE (PKUAS & JonAS)
Demo of JPS: Password Protection

Lessons Leant
Fractal v2 controllers are not sufficient & necessary
Evolution other than revolution to reflection
Managing reflective systems in the whole lifecycle

Conclusion and Future Work

5 huanggang@sei.pku.edu.cn

Reflection
Reflection

Also known as computational reflection, is originated by
B.C. Smith to access and manipulate the LISP program
as a set of data in execution.

• Smith, B.C. Procedural Reflection in Programming Languages. Ph.D
Thesis, MIT, 1982.

As a promising way to achieve high adaptability,
reflection is propagated into more programming
languages, operating systems and distributed systems,
and so on.

• 3-KRS, Prolog, CLOS, Smalltalk, Java, C# …
• Apertos, MetaOS, 2K …
• CodA, GARF …

Component based systems also need reflection

6 huanggang@sei.pku.edu.cn

Reflection in Component based Systems

Component
Business

Component
Reflection

R
eflective

C
om

ponent

Reflective Component Model:
What is a reflective component
e.g. Fractal, OpenORB, K-Component

Middleware for Reflection:
How can a component be reflective
e.g. Julia, AOKell, OpenCOM

Component

Middleware
Service

R
eflective

M
iddlew

are

Middleware
Reflection

Reflective Middleware:
Making traditional middleware reflective
e.g. OpenCORBA, dynamicTAO,
FlexiNET, MChaRM, PKUAS
Different with middleware for reflection
though some functions are similar

7 huanggang@sei.pku.edu.cn

Reflective Component vs. Reflective Middleware

Component
Business

Component
Reflection

R
eflective

C
om

ponent

Reflective Component:
+ Formal programming model
±Easy to understand (by application developers)
±Encourage as well as rely on application

developers for implementing reflection
– Poor monitoring and controlling out

side of components

Component

Middleware
Service

R
eflective

M
iddlew

are

Middleware
Reflection

Reflective Middleware:
– Ad hoc programming model
± Easy to understand (by middleware vendors)
± Release as well as prevent application

developers from reflection impl
+ Well monitoring and controlling out

side of components

Unfortunately, neither of them is sufficient
for popular application of reflection

8 huanggang@sei.pku.edu.cn

Recap of Reflection’s Promise
Reflection is a promising way to achieve high
adaptability

Everything in a runtime system may be to change
• Reflective component cannot change middleware and

vice versa
Everything is changed by a condition at a time

• Different changes may be understood from different
views (application or middleware)

Usability is a key to practice of new technology
Easy to use (programming model of reflective component)
Easy to reuse (reusable functions of reflective middleware)

It’s the time to combine RC & RM

9 huanggang@sei.pku.edu.cn

Goal of ReflectAll

Demonstrate the combination of RC & RM
The combination is feasible

• Reflective component & reflective middleware can be
combined

The combination is promising
• Keep the advantages while remove the disadvantages

Review existing RC & RM
Limitation
Killer application

10 huanggang@sei.pku.edu.cn

Overview of ReflectAll

ABCTool:
Architectural model
driven engineering tool
covering the whole lifecycle
of component based systems
Fractal Program

m
ing M

odel

RSA for PKUAS

RSA for JonAS

Prototype
in June

Prototype
in Feb.

Runtime Software Architecture:
Reference model for architecture
based reflective middleware

Huang G, Mei H, Yang F. Runtime Recovery and Manipulation of Software
Architecture of Component-based Systems. Journal of Automated Software
Engineering, Springer, Vol. 13 No. 2, 251-278, Feb. 2006

11 huanggang@sei.pku.edu.cn

ReflectAll: Server Level Architecture

Leveraging reflective component and reflective middleware
for reflecting all things in a component based system

Fractal
Client

Fractal
Interface

Fractal
Impl

EJB
Client

EJB
Interface

EJB
Stub

Client Side
AS

Reflect
Service

Objects of Reflective
Middleware

Objects by App
Developers

Server Side

JNDI
Service

Normal
EJB

Container

Reflective
EJB

Container
Deploy Reflectize

Reflect Server

Meta Objects of
Reflective Middleware

12 huanggang@sei.pku.edu.cn

ReflectAll: Container Level Architecture

All things can be reflected by the collaboration between
middleware vendors and application developers

Fractal
Client

Fractal
Interface

Fractal
Impl

EJB
Client

EJB
Interface

EJB
Stub

Client Side
Container

EJB
Interface

Reflective
Interface

EJB
Impl

Middleware
Defined

Application
Defined

Meta Objects of
Reflective Middleware

Meta Objects by
App Developers

Dynamic
AOP

Extension
Points of RM

Server Side

AOP is not enough
for reflection

13 huanggang@sei.pku.edu.cn

Demo of JPS: Password Protection

Change JPS at runtime without any modification to the
source code

Four steps
Opening the design artifacts of the application to be managed
Incarnating the runtime software architecture
Customizing the reflective components when necessary
Managing the runtime system

JonAS Demo will be published in ObjectWeb
Modified JonAS v4.7.1
Source code of controllers, JPS deployable package
ABCTool English version

14 huanggang@sei.pku.edu.cn

Lessons Learnt
Fractal v2 controllers are not sufficient & necessary

Binding controller and some of the following controllers are useless in
some cases
Controllers should be customizable at runtime
Connectors may be complex and need to be reflective

Evolution other than revolution to reflection
Managing reflective systems in the whole lifecycle

Not yet but
reusable

Yes but need
configuration

Yes

Already
implemented?

The two controllers in JPS
demo

applicationUser-
defined

Persistence controller
Polymorphism controller

middlewarePre-defined

Attribute controller
Lifecycle controller

middlewareBuilt-in

ExamplesSpecific to

15 huanggang@sei.pku.edu.cn

Lessons Learnt
Fractal v2 controllers are not sufficient & necessary

Evolution other than revolution to reflection
Legacy systems cannot be ignored
Reflective mechanisms can be added one by one

Managing reflective systems in the whole lifecycle

Fractal
Client

Fractal
Interface

Fractal
Impl

EJB
Client

EJB
Interface

EJB
Stub

Client Side

EJB
Interface

Reflective
Interface

EJB
Impl

Middleware
Defined

Application
Defined

JMX in JonAS 4.x

Prototype in
JonAS v4.7

Server Side

JonAS A La Carte

OSGi in JonAS 5

16 huanggang@sei.pku.edu.cn

Lessons Learnt
Fractal v2 controllers are not sufficient & necessary
Evolution other than revolution to reflection

Managing reflective systems in the whole lifecycle
ABC: architectural model driven approach

Feature
Oriented

Requirements
Analysis

Design of
Software

Architecture

Architecture
Based

Component
Composition

Architecture
Based

Application
Deployment

Architecture
Based

Maintenance
and Evolution

FMTool ABCTool v3.0

Design
View

Deployment
View

Runtime
View

Implementation
View

17 huanggang@sei.pku.edu.cn

Conclusion & Future Work

Combination of reflective component and reflective
middleware is necessary, feasible and promising

Demonstration on J2EE (PKUAS & JonAS)

Combination identifies some future directions
A more flexible reflective component model
An evolutionary way to reflective systems
An architectural model driven approach to systematic use
of reflection
In particular, deeper collaboration between PKU &
ObjectWeb

http://www.sei.pku.edu.cn/~huanggang/

18 huanggang@sei.pku.edu.cn

ThanksThanks

